来源:bet9十年信誉玩家首选 时间:2021-05-25浏览:9627设置



2002年本科毕业于兰州大学化学化工学院,同年考入中国科学院大连化学物理研究所,师从李灿院士进行光催化降解硫化氢方面的研究,2009年初博士毕业后相继加入日本东京大学Prof. Domen及沙特阿布杜拉国王科技大学(KAUST)Prof. Takanabe课题组从事博士后研究,20126月受邀返回东京大学以主任研究员身份加入“人工光合成化学过程技术研究组合”,开展氧硫化物光催化及光电化学分解水研究;20174月加入bet9十年信誉玩家首选bet9十年信誉玩家首选。




Selected Publications:

44.  Formation of multifaceted nano-groove structure on rutile TiO2 photoanode for efficient electron-hole separation and water splitting”, X. Zhan, Y. Luo, Z. Wang, Y. Xiang, Z. Peng, Y. Han, H. Zhang, R. Chen, Q. Zhou, H. Peng, H. Huang, W. Liu, Ou X., G. Ma*, F. Fan*, F. Yang, C. Li, Z. Liu*J. Energy Chem.2021DOI: 10.1016/j.jechem.2021.05.007.

43. “Fabrication of a facet-oriented BiVO4 photoanode by particle engineering for promotion of charge separation efficiency”, B. Zhang, Y. Xiang, M. Guo, J. Wang, K. Liu, W. Lin, and G. Ma*ACS Appl. Energy Mater., 2021, 4, 4259.

42. Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improvedphotoelectrochemical performanceX. Yan, R. Pu, R. Xie, B. Zhang, Y. Shi, W. Liu*, G. Ma*, N. Yang*Appl. Surf. Sci., 2021, 552, 149442.

41. “Flux-assisted preparation of Sm2Ti2S2O5 powder applied to photocatalytic H2 production from waterM. Chao, G. Ma*, Chin. J. Inorg. Chem.2021, 36, 16.

40. “Facet-selective construction of Cu2O/Pt/BiVO5 heterojunction arrays for photocatalytic H2 production from waterJ. Liu, B. Zhang, Y. Xiang, G. Ma*, New J. Chem., 2020, 45, 517.

39. A one-step synthesis of a Ta3N5 nanorod photoanode from Ta plates and NH4Cl powder for photoelectrochemical water oxidation, Y. Xiang, B. Zhang, J. Liu, S. Chen, T. Hisatomi, K. Domen, G. Ma*Chem. Comm.202056, 11843.

38. Alteration of onset potentials of Rh-doped SrTiO3 electrodes for photoelectrochemical water splitting, M. Guo, G. Ma*, J. Cat., 2020, 391, 241.

37. Diatom-inspired multiscale mineralization of patterned protein-polysaccharide complex structures, K. Li, Y. Li, X. Wang, M. Cui, B. An, J. Pu, J. Liu, B. Zhang, G. Ma, C. Zhong*, Natl. Sci. Rev., 2020, DOI: 10.1093/nsr/nwaa191.

36. Efficient photoelectrochemical hydrogen production over CuInS2 photocathodes modified with amorphous Ni-MoSx operating in a neutral electrolyte, J. Zhao, T. Minegishi, G. Ma, M. Zhong, T. Hisatomi, M. Katayama, T. Yamada, K. Domen*, Sustain. Energ. Fuels, 2020, 4, 1607.

35. Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide, S. Chen, T. Hisatomi, G. Ma, Z. Wang, Z. Pan, T. Takata, K. Domen*, Chin. J. Cat., 2019, 40, 1668.

34. Visible‐light‐driven photocatalytic Z‐Scheme overall water splitting in La5Ti2AgS5O7‐based Powder‐suspension system, Z. Song, T. Hisatomi, S. Chen, Q. Wang, G. Ma, S. Li, X. Zhu, S. Sun*, K. Domen*, ChemSusChem, 2019, 12, 1906.

33. Efficient hydrogen evolution on (CuInS?)? (ZnS)?-? solid solution-based photocathodes under simulated sunlight, J. Zhao, T. Minegishi, H. Kaneko, G. Ma, M. Zhong, M. Nakabayashi, M. Katayama, N. Shibata, T. Yamada, K. Domen*, Chem. Comm., 2019, 55, 470.

32. Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting, S. Chen, G. Ma, Q. Wang, S. Sun, T. Hisatomi, T. Higashi, Z. Wang, M. Nakabayashi, N. Shibata, Z. Pan, T. Hayashi, T. Minegishi, T. Takata, K. Domen*, J. Mat. Chem. A, 2019, 7, 7415.

31. Plate-like Sm2Ti2S2O5 particles prepared by a flux-assisted one-step synthesis for the evolution of O2 from aqueous solutions by both photocatalytic and photoelectrochemical reactions, G. Ma, Y. Kuang, D. H. K. Murthy, T. Hisatomi, J. Seo, S. Chen, H. Matsuzaki, Y. Suzuki, M. Katayama, T. Minegishi, K. Seki, A. Furube, K. Domen*, J. Phys. Chem. C, 2018, 122, 13492.

30. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light, S. Sun, T. Hisatomi, Q. Wang, S. Chen, G. Ma, J. Liu, S. Nandy, T. Minegishi, M. Katayama, K. Domen*, ACS Cat., 2018, 8, 1690.

29. Enhancement of the H2 evolution activity of La5Ti2Cu(S1?xSex)5O7 photocatalysts by coloading Pt and NiS cocatalysts, S. Nandy, T. Hisatomi, G. Ma, T. Minegishi, M. Katayama, K. Domen*, J. Mat. Chem. A, 2017, 5, 6106.

28. Ultrastable low-bias water spitting photoanodes via photocorrosion inhibition and in-situ catalyst regeneration, Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, T. Yamada, A. Kudo, K. Domen*, Nature Energy, 2017, 2, 16191.

27. Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalysts, G. Ma, S. Chen, Y. Kuang, S. Akiyama, T. Hisatomi, M. Nakabayashi, N. Shibata, M. Katayama, T. Minegishi, K. Domen*, J. Phys. Chem. Lett., 2016,7, 3892.

26. Rationalizing long-lived photo-excited carriers in photocatalyst (La5Ti2CuS5O7) in terms of one-dimensional carrier transport, Y. Suzuki, R. Singh, H. Matsuzaki, A. Furube, G. Ma, T. Hisatomi, K. Domen, K. Seki*, Chem. Phys., 2016, 476, 9.

25. Photoanodic and photocathodic behaviours of La5Ti2CuS5O7 electrodes in water splitting reaction, G. Ma, Y. Suzuki, R. Singh, A. Iwanaga, Y. Moriya, T. Minegishi, J. Liu, T. Hisatomi, H. Nishiyama, M. Katayama, K. Seki, A. Furube, T. Yamada, K. Domen*, Chem. Sci., 2015, 6, 4513.

24. Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transferG. Ma, J. Liu, T. Hisatomi, T. Minegishi, Y. Moriya, M. Iwase, H. Nishiyama, M. Katayama, T. Yamada, K. Domen*, Chem. Comm., 2015, 51, 4302.

23. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by electrodeposition-sulfurization method, J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan, M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda*, N. Shibata, T. Yamada, K. Domen*, Angew. Chem. Int. Ed., 2014, 53, 11808.

22. Improving the photoelectrochemical activity of La5Ti2CuS5O7 for hydrogen evolution by particle transfer and doping, J. Liu, T. Hisatomi, G. Ma, A. Iwanaga, T. Minegishi, Y. Moriya, M. Katayama, J. Kubota, K. Domen*Energ. Environ. Sci.2014, 7, 2239.

21. Fabrication of photocatalyst panels and the factors determining their activity for water splitting, A. Xiong, G. Ma, K. Maeda, T. Takata, T. Hisatomi, T. Setoyama, J. Kubota, K. Domen*, Cat. Sci. Tech., 2014, 4, 325.

20. Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu2ZnSnS4-based photoelectrode assemblies, P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou, S. Maekawa, Y. Kobori, J. Kubota, K. Domen*J. Am. Chem. Soc.2012, 134, 2469.

19. Semiconductor monolayer assemblies with oriented crystal faces, G. Ma, T. Takata, M. Katayama, F. Zhang, Y. Moriya, K. Takanabe, J. Kubota, K. Domen*, CrystEngComm, 2012, 14, 59.

18. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst, F. Wen, X. Wang, L. Huang, G. Ma, J. Yang, C. Li*, Chemsuschem,2012, 5, 849.

17. Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating, G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen*, Chem. Phys. Lett., 2011, 501, 619.

16. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation, X. Zong, J. Han, G. Ma, H. Yan, G. Wu and C. Li*, J. Phys. Chem. C, 2011, 115, 12202.

15. Enhanced visible-Light activity of titania via confinement inside carbon nanotubes, W. Chen*, Z. Fan, B. Zhang, G. Ma, K. Takanabe, X. Zhang, Z. Lai*, J. Am. Chem. Soc.2011, 133, 14896.

14. Photocatalytic H2 evolution on MoS2/CdS catalyst under visible light irradiation, X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li*, J. Phys. Chem. C, 2010, 114, 1963.

13. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light, D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen*, Appl. Phys. Express, 2010, 3, 101202.

12. Preparation, characterization and photocatalytic performance of Zn2-xGeO4-x-3yN2y catalysts under visible light irradiationB. Ma, X. Zong, G. Ma, J. Yang, P. Ying, C. Li*, Chem. Bull., 2010, 6, 556.

11. Photocatalytic hydrogen production on CuInS2-ZnS solid solution prepared by solvothermal method, G. Ma, Z. Lei, H. Yan, X. Zong, C. Li*, Chin. J. Cat., 2009,30, 73.

10. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li*, J. Cat., 2009, 266, 165.

9. Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst, X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun, C. Li*, Chem. Comm., 2009, 30, 4536.

8. Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation, G. Ma, H. Yan, J. Shi, X. Zong, Z. Lei, C. Li*, J. Cat., 2008, 260, 134.

7. Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction, G. Ma, H. Yan, X. Zong, B. Ma, H. Jiang, F. Wen, C. Li*, Chin. J. Cat., 2008, 29, 313.

6. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li*,J. Am. Chem. Soc.2008, 130, 7176.

5. Suppressing the CO formation via anion adsorption on Pt/TiO2 for the H2 production from the photocatalytic reforming of methanol, G. Wu, T. Chen, X. Zong, H. Yan, G. Ma, C. Li*, J. Cat., 2008, 253, 225.

4. Kinetics of photogenerated electrons involved in photocatalytic reaction of methanol on Pt/TiO2, T. Chen, G. Wu, Z. Feng, J. Shi, G. Ma, P. Ying, C. Li*, Chin. J. Chem. Phys., 2007, 20, 483.

3. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in-situ FTIR and time-resolved IR spectroscopy, T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, C. Li*, J. Phys. Chem. C, 2007, 111, 8005.

2. Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination, Z. Lei, G. Ma, M. Liu, W. You, H. Yan, G. Wu, T. Takata, M. Hara, K. Domen*, C. Li*, J. Cat., 2006, 237, 322.

1. Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation, M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen*, C. Li*, Chem. Comm., 2004, 36, 2192.

Book chapter:

G. Ma, T. Hisatomi, K. Domen, “Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting”, in “From Molecules to Materials-Pathway to Artificial Photosynthesis”, Springer Publisher, 2015, pp 1-56, ISBN 978-3-319-13800-8. 

Orcid and ResearcherID:  









仇亚茹 / 博士后 (2020)

PhD: 2017-2020南京大学, 化学

张博杨 / 博士研究生 (2018)

BS: 2014-2018, 太原理工大学, 应用化学


向遥 / 硕士研究生 (2018)

BS: 2014-2018, 湖南大学, 应用物理


刘金涛 / 硕士研究生 (2018)

BS: 2014-2018,  武汉理工大学, 材料物理


王佳明 / 硕士研究生 (2018)

BS: 2014-2018, 西北大学, 材料物理


林文瑞 / 硕士研究生 (2019)

BS: 2015-2019, bet9十年信誉玩家首选, 材料科学与工程


铠玮 / 硕士研究生 (2019)

BS: 2015-2019, 福建师范大学, 应用化学


许垚 / 硕士研究生 (2020)

BS: 2016-2020, bet9十年信誉玩家首选, 材料科学与工程


史珂 / 硕士研究生 (2020)

BS: 2016-2020, 上海师范大学, 化学工程与工艺


张家铭 / 硕士研究生 (2020)

BS: 2016-2020, 黑龙江大学, 高分子材料与工程



郑仓晟 / Lab Engineer(2018)     

周伟成 / 硕士研究生 (2018)

杨懿 / 上科大本科生(2019)

郭美 / 硕士研究生(2017)

晁明坤 / 硕士研究生(2017)